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First principles modelling 
approach

Graph representation 
of the landscape

Eco-evolutionary individual 
based model
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Graphs as landscape abstraction

Graphs, to capture dispersal 
patterns

è Topological constraints
migration

migration
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and environmental 
heterogeneity

Habitat 1

Habitat 2

Habitat 3

Graphs as landscape abstraction
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Expected dynamics

§ Expected time variation of the process
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Differentiation
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Setting #1 – Effect of heterogeneity in degree on differentiation

Average degree of the 
graph

Mean field approach: all vertices having 
the same degree are equivalent
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Setting #1 – Effect of heterogeneity in degree on differentiation
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Setting #2 – Environmental assortativity 𝒓𝜽 drives differentiation 
through Isolation by Environment
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