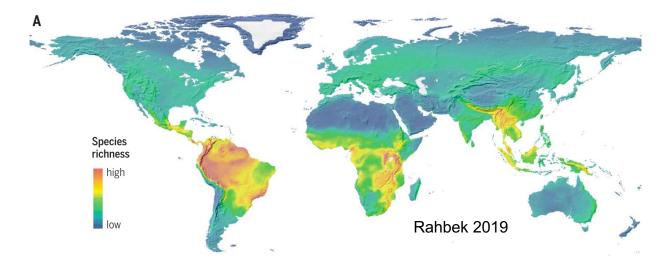


Graph topology and habitat assortativity drive phenotypic differentiation in an eco-evolutionary model

Victor Boussange & Loic Pellissier

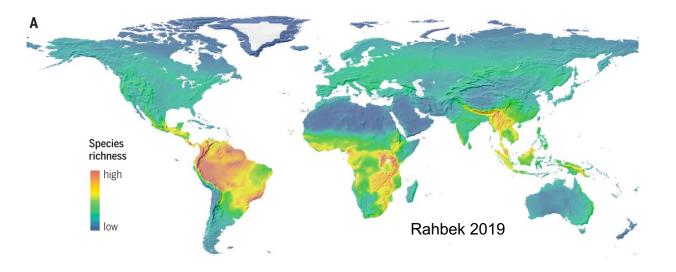
Large-scale geographical patterns of species diversity

Large-scale geographical patterns of species diversity



E *H* zürich

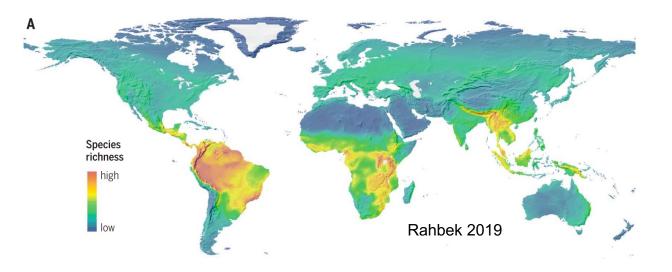
Large-scale geographical patterns of species diversity



Mountains represent **25 % of land area**, **but 85% of the world's species** of amphibians, birds and mammals, many entirely restricted to mountains (Rahbek 2019)

E *H* zürich

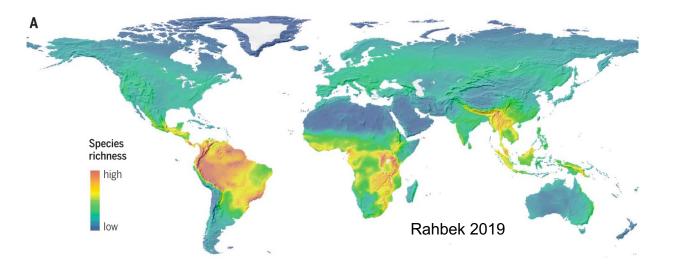
Large-scale geographical patterns of species diversity



Mountains represent **25 % of land area**, **but 85% of the world's species** of amphibians, birds and mammals, many entirely restricted to mountains (Rahbek 2019)

Topological constraints Habitat heterogeneity

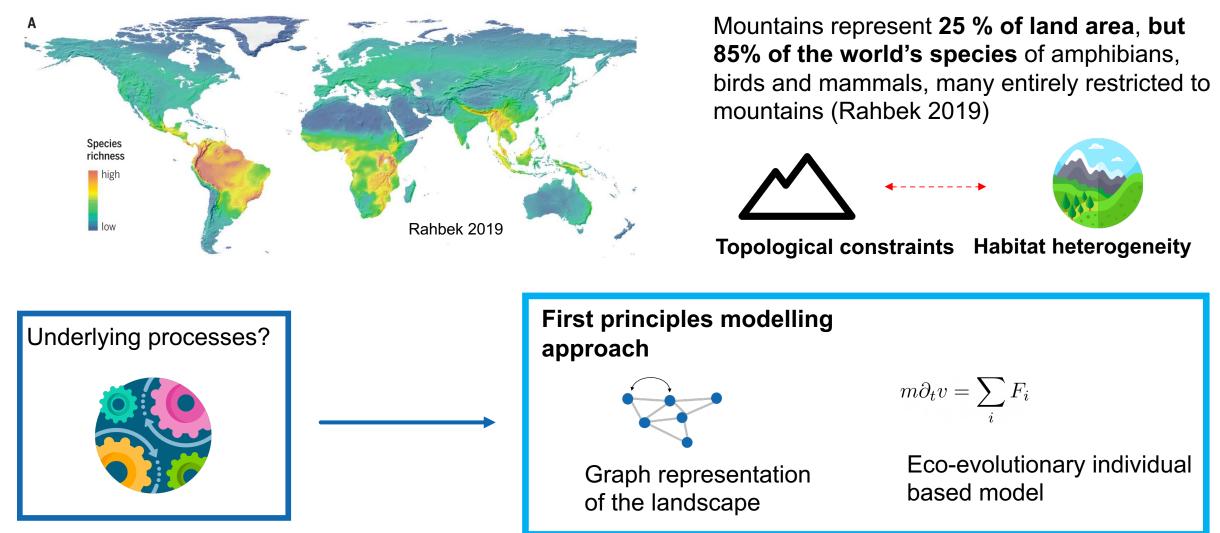
Large-scale geographical patterns of species diversity

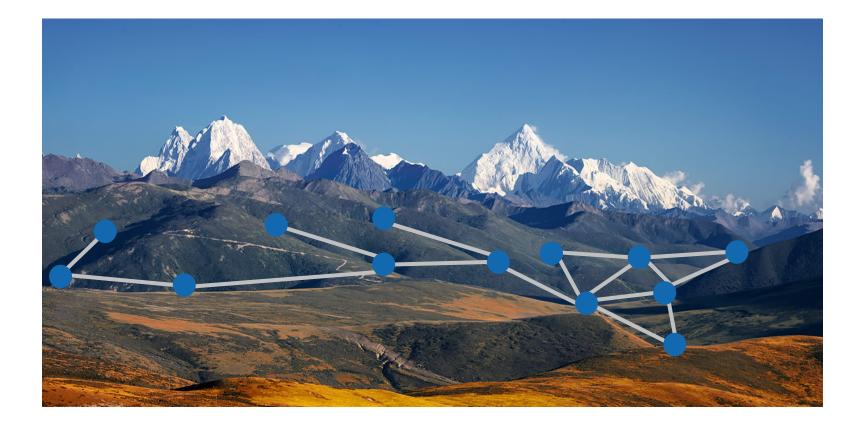


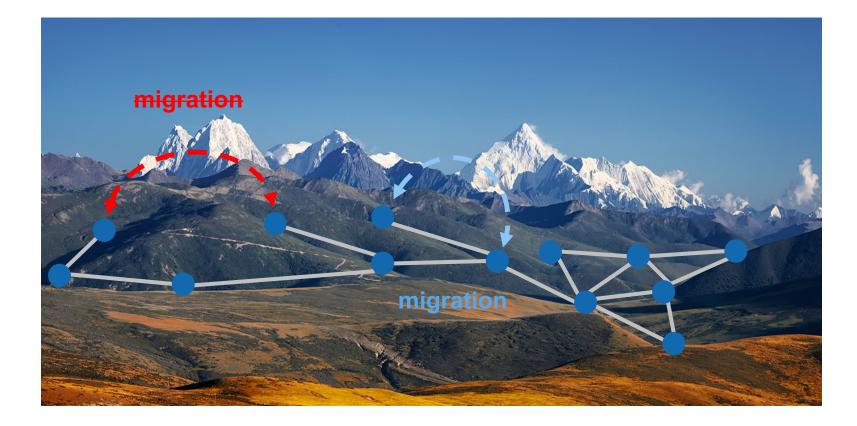
Mountains represent **25 % of land area**, **but 85% of the world's species** of amphibians, birds and mammals, many entirely restricted to mountains (Rahbek 2019)

Topological constraints Habitat heterogeneity

Large-scale geographical patterns of species diversity

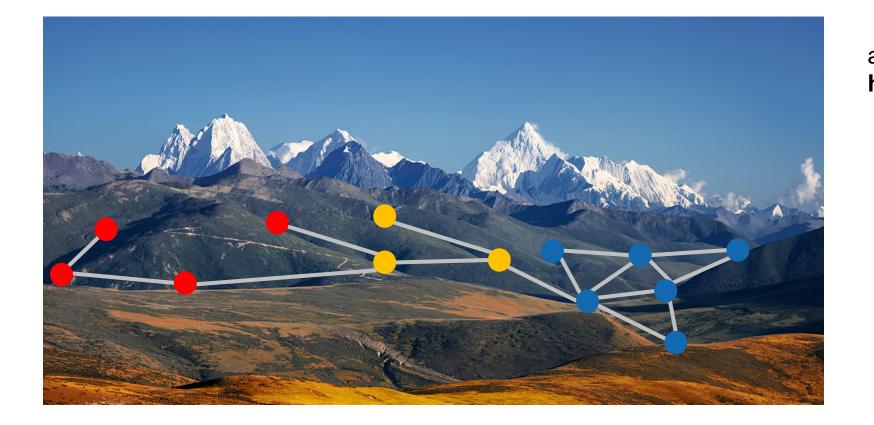






Graphs, to capture dispersal patterns

→ Topological constraints

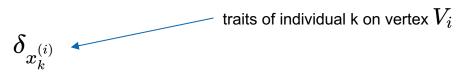


and environmental heterogeneity

Champagnat et al. 2006

Measure-valued point process

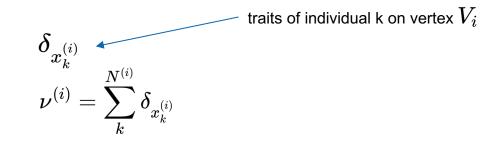
- Measure-valued point process
 - Individuals are represented by dirac functions



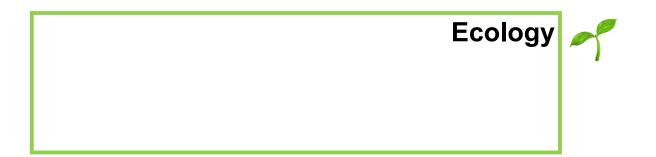
WSL

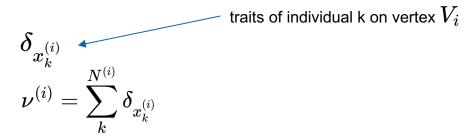
Eco-evolutionary model

- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac



- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac

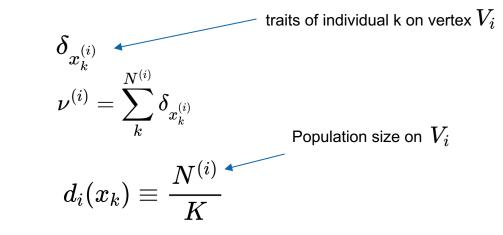




Champagnat et al. 2006

- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac
 - Individuals die

competition for a finite amount of ressource



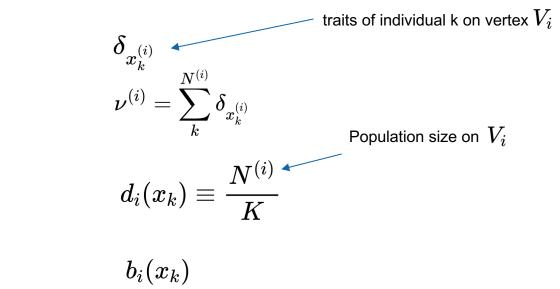
Champagnat et al. 2006

- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac

Ecology

Individuals die

- competition for a finite amount of ressource
- Individuals reproduce



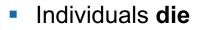
Eco-evolutionary model

Champagnat et al. 2006

- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac

Ecology

Dispersa



- competition for a finite amount of ressource
- Individuals reproduce
 - Offsprings can migrate to neighboring vertices

 $b_i(x_k)$

m

 $d_i(x_k) \equiv$

 $\delta_{x_k^{(i)}}$

traits of individual k on vertex V_i

Population size on V_i

Eco-evolutionary model

Champagnat et al. 2006

- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac

Individuals reproduce

Individuals die

Offsprings can migrate to neighboring vertices

competition for a finite amount of ressource

Dispersa

Evolutior

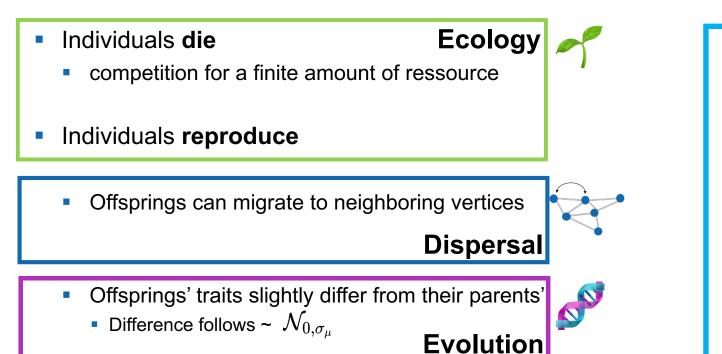
Ecology

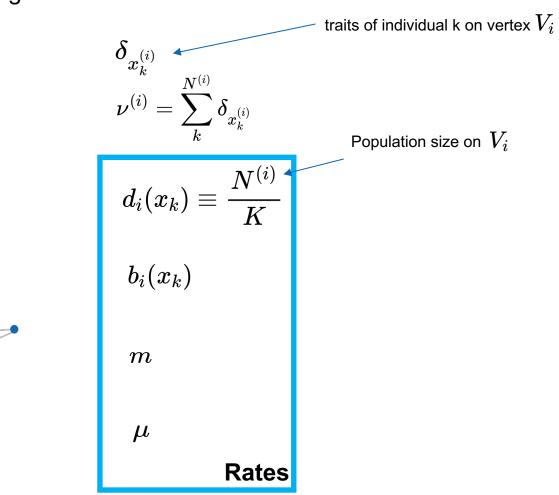
Offsprings' traits slightly differ from their parents'

• Difference follows ~ $\mathcal{N}_{0,\sigma_{\mu}}$

traits of individual k on vertex V_i $\delta_{x_k^{(i)}}$ Population size on V_i $d_i(x_k) \equiv$ $b_i(x_k)$ m μ

- Measure-valued point process
 - Individuals are represented by dirac functions
 - Population on V_i is represented by a **sum** of dirac





Expected dynamics

Expected time variation of the process

$$L\phi(
u_t^{(i)}) = \partial_t \mathbb{E}\Big[\phi(
u_t^{(i)})\Big]$$

$$\begin{split} L\phi(\nu_t^{(i)}) &= \int_{\mathcal{X}} \Bigl\{ b_i(\mathbf{x})(1-\mu)(1-m)(\phi(\nu_t^{(i)}+\delta_{\mathbf{x}})-\phi(\nu_t^{(i)})) \Bigr\} \nu_t^{(i)}(d\mathbf{x}) & \text{births w/o mutations, w/o migrations} \\ &+ \int_{\mathcal{X}} \Bigl\{ \mu(1-m) \int_{\mathcal{X}} b_i(y)(\phi(\nu_t^{(i)}+\delta_z)-\phi(\nu_t^{(i)})) \mathcal{M}(\mathbf{x},y) dy \Bigr\} \nu_t^{(i)}(d\mathbf{x}) & \text{births w/ mutations, w/o migrations} \\ &+ \iint_{\mathcal{X}} \Bigl\{ \frac{1}{K} (\phi(\nu_t^{(i)}-\delta_{\mathbf{x}}))-\phi(\nu_t^{(i)})) \nu_t^{(i)}(dy) \nu_t^{(i)}(dx) \Bigr\} & \text{deaths} \\ &+ \sum_{j \neq i} \frac{a_{i,j}}{d_j} \int_{\mathcal{X}} \mu m \Bigl\{ \int_{\mathcal{X}} b_j(y)(\phi(\nu^{(j)}+\delta_{\mathbf{x}})-\phi(\nu^{(j)})) \mathcal{M}(\mathbf{x},y) dy \Bigr\} \nu_t^{(j)}(d\mathbf{x}) & \text{migrations w/ mutations} \\ &+ \sum_{j \neq i} \frac{a_{i,j}}{d_j} \int_{\mathcal{X}} \Bigl\{ b_j(\mathbf{x})(1-\mu)m(\phi(\nu^{(j)}+\delta_{\mathbf{x}})-\phi(\nu^{(j)})) \Bigr\} \nu_t^{(j)}(d\mathbf{x}). & \text{migrations w/o mutations} \end{gathered}$$

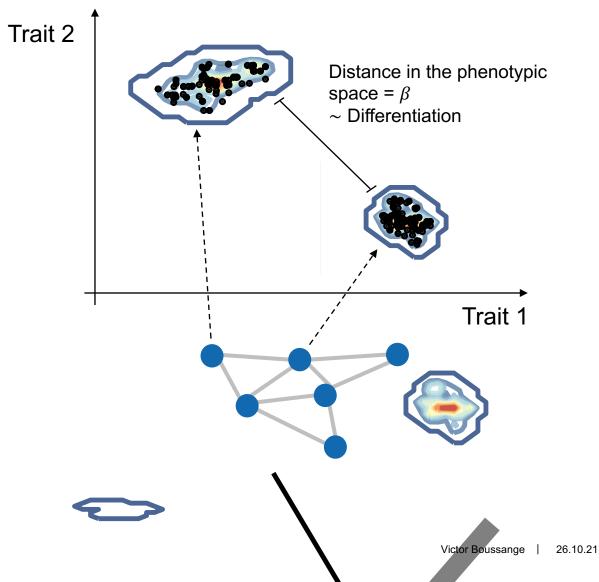
8

Differentiation

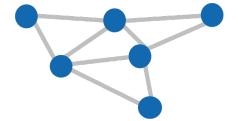
Variance of the mean trait $\ \bar{x}^{(i)} \ \mathrm{across}$ nodes

$$eta = rac{1}{2M}\sum_{i}\sum_{j} \left(ar{x}^{(i)} {-} ar{x}^{(j)}
ight)^2$$

number of vertices



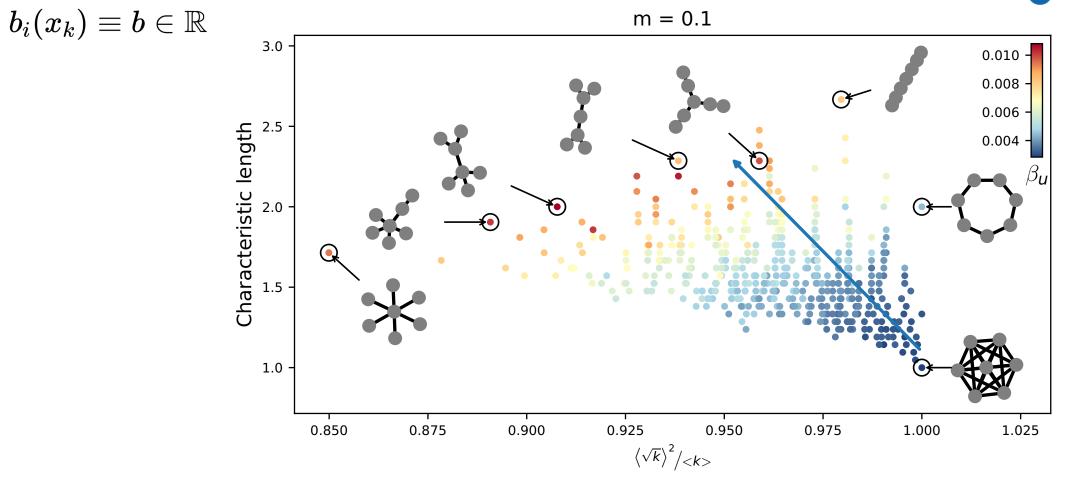
Setting #1 – Effect of topology on differentiation



Setting #1 – Effect of topology on differentiation

 $b_i(x_k)\equiv b\in\mathbb{R}$

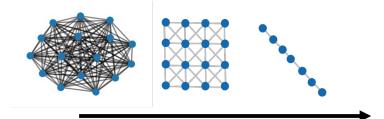
Setting #1 – Effect of topology on differentiation



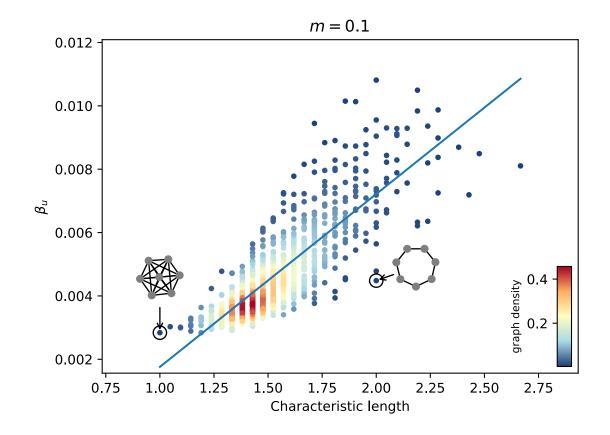
Setting #1 – Effect of characteristic length on differentiation

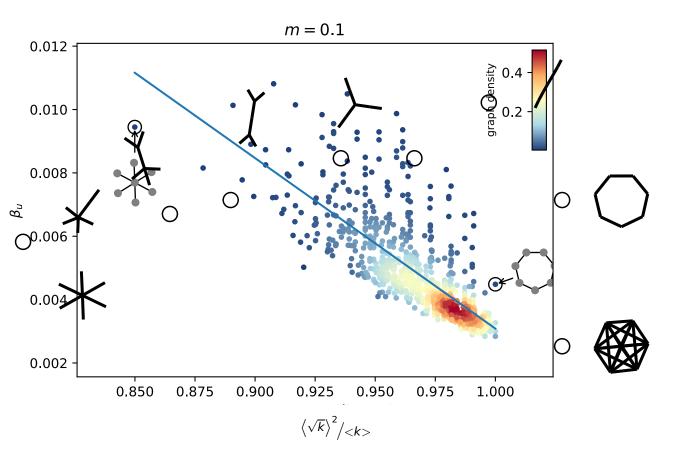


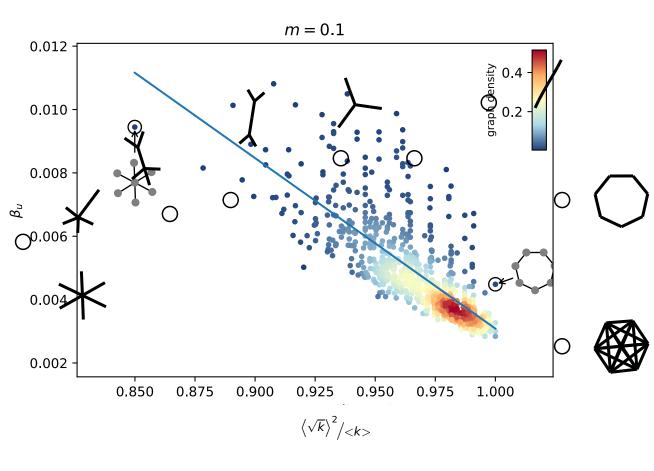
Setting #1 – Effect of characteristic length on differentiation



Characteristic length ~ landscape dimensionality



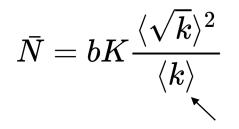


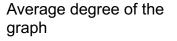


 \bigcirc

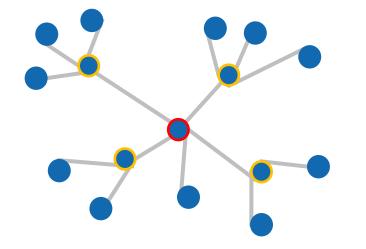
$$egin{aligned} \partial_t N_t^{(i)} &= N_t^{(i)} \left[b(1-m) - rac{N_t^{(i)}}{K}
ight] \ &+ mb \sum_{j
eq i} rac{a_{i,j}}{d_j} N_t^{(j)} \end{aligned}$$

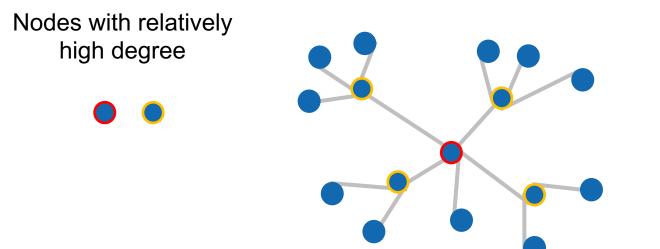
Mean field approach: all vertices having the same degree are equivalent

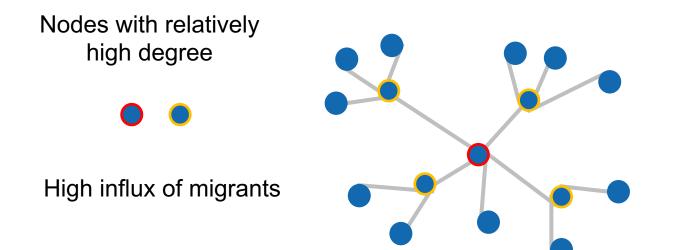


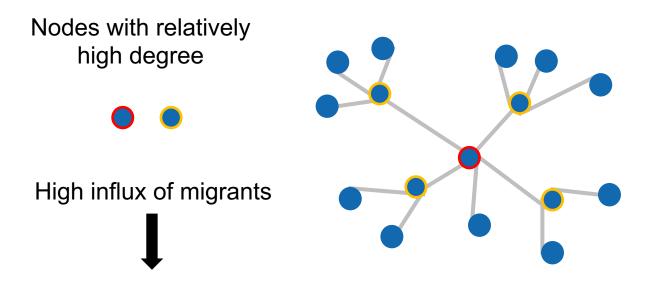


ETH zürich

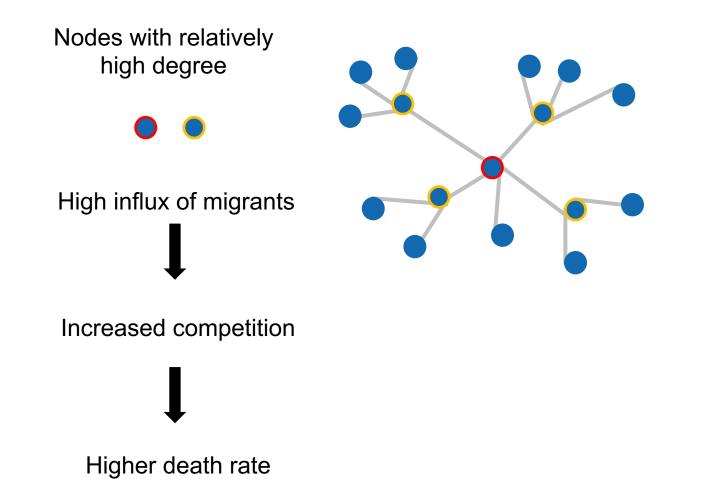




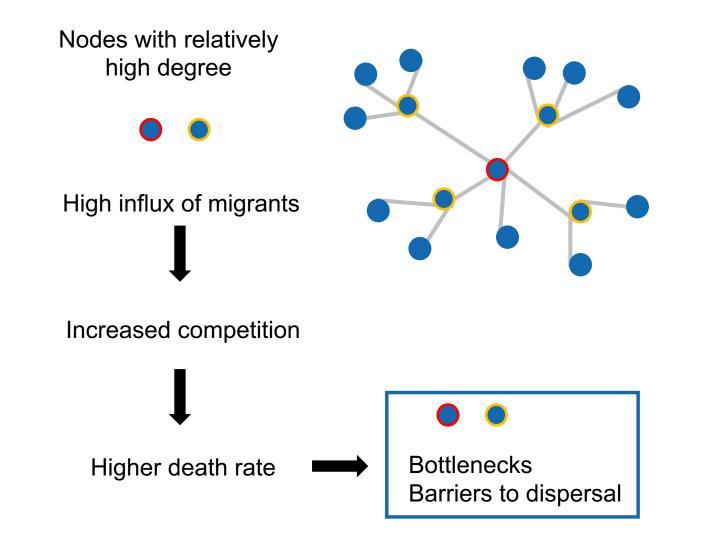




Increased competition



Setting #1 – Effect of heterogeneity in degree on differentiation



Setting #2 – Effect of topology & habitat heterogneity on differentiation

EHzürich

Setting #2 – Effect of topology & habitat heterogneity on differentiation

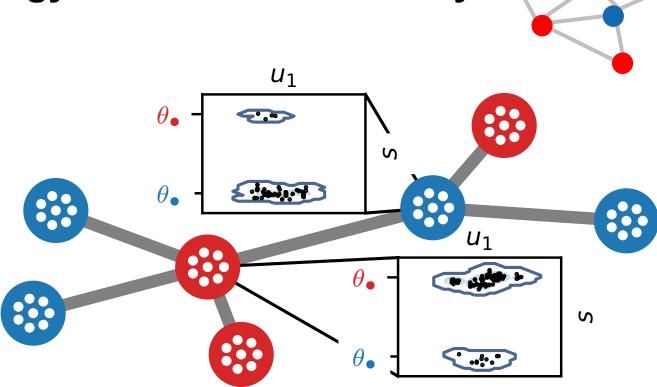
$$x_k = \left(u_k, s_k\right)$$

 $b_i(x_k)\equiv b(1-p(s_k- heta_i)^2).$

Setting #2 – Effect of topology & habitat heterogneity on differentiation

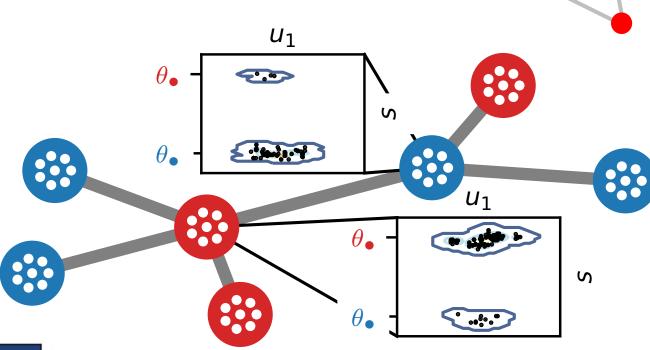
$$x_k = \left(u_k, s_k
ight)$$

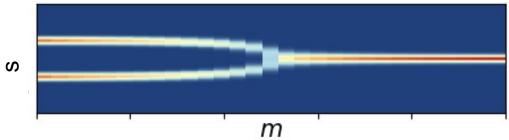
$$b_i(x_k)\equiv b(1-p(s_k- heta_i)^2).$$



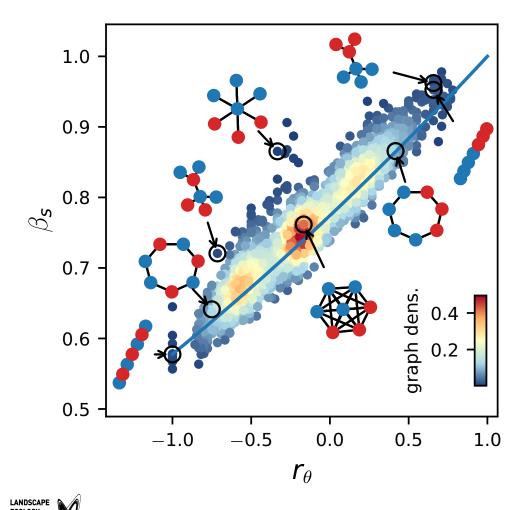
Setting #2 – Effect of topology & habitat heterogneity on differentiation

$$egin{aligned} x_k &= (u_k, s_k) \ b_i(x_k) &\equiv b(1-p(s_k- heta_i)^2). \end{aligned}$$



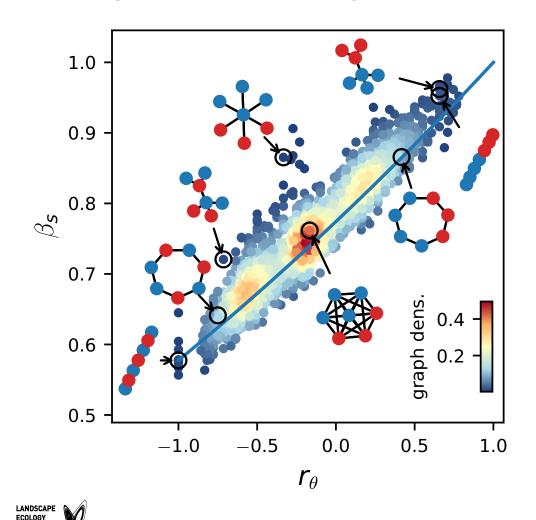


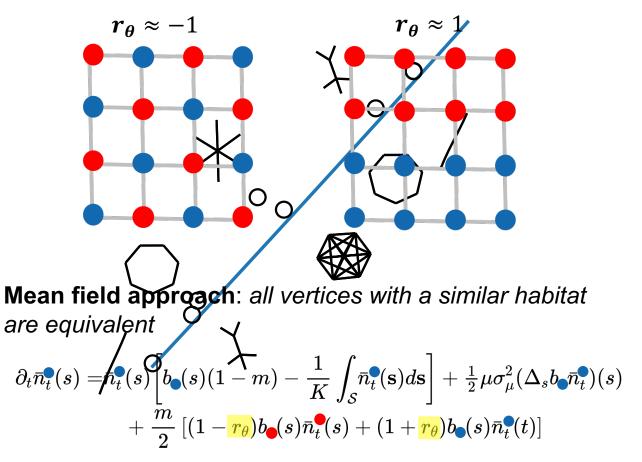
Setting #2 – Environmental assortativity r_{θ} drives differentiation through Isolation by Environment





Setting #2 – Environmental assortativity r_{θ} drives differentiation through Isolation by Environment





LANDSCAPE ECOLOGY

Ø

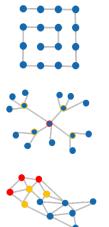
Summary

Summary

How do complex landscapes drive differentiation patterns?

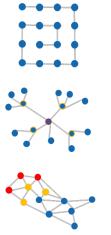
Summary

- How do complex landscapes drive differentiation patterns?
- Numerical and analytical results show that three important graph properties control the level of differentiation
 - Characteristic length
 - Heterogeneity in degree
 - Environmental assortativity r_{θ}



Summary

- How do complex landscapes drive differentiation patterns?
- Numerical and analytical results show that three important graph properties control the level of differentiation
 - Characteristic length
 - Heterogeneity in degree
 - Environmental assortativity r_{θ}

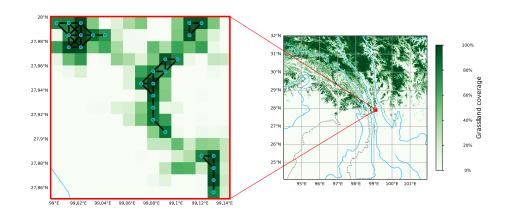


Boussange, V., & Pellissier, L. (2021). Topology and habitat assortativity drive neutral and adaptive diversification in spatial graphs. *BioRxiv*. https://doi.org/10.1101/2021.07.06.451404

Summary

- How do complex landscapes drive differentiation patterns?
- Numerical and analytical results show that three important graph properties control the level of differentiation
 - Characteristic length
 - Heterogeneity in degree
 - Environmental assortativity r_{θ}
- **Theory validation**: using graph-based metrics for realistic landscapes

Boussange, V., & Pellissier, L. (2021). Topology and habitat assortativity drive neutral and adaptive diversification in spatial graphs. *BioRxiv*. https://doi.org/10.1101/2021.07.06.451404

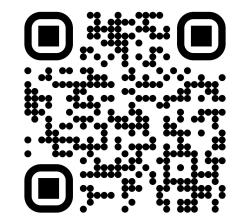


Acknowledgements

Acknowledgements

Thanks! (looking for a postdoc next year ⓒ)

Check out my personal website



to discover more about my research

