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1. Machine learning to simulate high-dimensional eco-evolutionary models
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Phenotypic differentiation

Eco-evolutionary model on spatial graphs
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Nonlocal PDEs

∂tn(i) = n(i)
[
b(i)(1−m)− 1

K

∫
S
n(i)(s)ds

]
+m

∑
j 6=i

bj(s)ai,jn(j) + 1
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Boussange, V. & Pellissier, L., Eco-evolutionary model on spatial graphs reveals how habitat
structure affects phenotypic differentiation. Commun Biol 5, 668 (2022).
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Modelling the joint distribution of traits

Numerous traits
• height
• diameter
• surface leaf area
• ...

Many traits may importantly affect
eco-evolutionary dynamics

@ PhyloPic

Phenotypic trait 1 Ph
en

oty
pic
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it 2
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p.
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be
r

Simulating high-dimensional phenotypic models is not feasible with standard
numerical methods.
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Curse of dimensionality

High dimensionality leads to complications for numerical simulations

• Computational complexity of standard numerical schemes
O(N) O(N2) O(N3)

s

• Standard numerical schemes for solving PDEs suffer the curse of
dimensionality.
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Numerical methods for simulating high-dimensional models

Machine learning-based method

Approximation of the solution
with NNs

NNs trained through a stochastic
reformulation of the PDE problem
(Feynman–Kac)

Boussange, V., Becker, S., Jentzen, A., Kuckuck, B., Pellissier, L., Deep learning approximations
for non-local nonlinear PDEs with Neumann boundary conditions. [arXiv] (2022), 59 pages. Revision
requested from Partial Differential Equations and Applications.
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Feynman Kac formula

PDE Problem

∂tu(t, x) = µ(t, x)∇xu(t, x) +
1
2σ

2(t, x)∆xu(t, x)

+ f (x,u(t, x))
(1)

with initial conditions u(0, x) = g(x), where
u : Rd → R.

Stochastic reformulation

u(t, x) =
∫ t

0
E
[
f (Xxt−s,u(T − s, Xxt−s))ds

]
+ E

[
u(0, Xxt )

] (2)

with

Xxt =
∫ t

0
µ(Xxs)ds+

∫ t

0
σ(Xxs)dBs + x. (3)
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• HighDimPDE.jl: A new package
implementing recent solver
algorithms that break down the
curse of dimensionality

• HighDimPDE.jl belongs to the
SciML ecosystem

� �
using HighDimPDE

alg = DeepSplitting(kwargs...)

prob = PIDEProblem(kwargs...)

sol = solve(prob, alg, kwargs...)� �
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We are now able to simulate 10-dimensional eco-evolutionary models!

Boussange, V., Becker, S., Jentzen, A., Kuckuck, B., Pellissier, L., Deep learning approximations
for non-local nonlinear PDEs with Neumann boundary conditions. [arXiv] (2022), 59 pages. Revision
requested from Partial Differential Equations and Applications.
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2. Machine learning for inverse modelling with ecological time series
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Model

ProcessProcessProcess Mechanism
Property of
interest
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Observations
(time series)

ModelM1

ProcessProcessProcess Mechanism

ModelM2

ProcessProcessProcess Mechanism
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Inverse modelling

🌱

🦗 🐦

ModelM1

🌱

🦗 🐦

ModelM2

Compare model evidence

P(M2|Data) > P(M1|Data)
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Inverse modelling
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Calculating the model evidence

P(Data|M) =

∫
P(θ|M,Data)︸ ︷︷ ︸

Posterior distribution of
the model parameters

dθ

∝ P(θ∗|M,Data)σ(θ∗,M)

(4)

Where θ∗ is the maximum a priori estimate

19



Calculating the model evidence

LM(θ) = − log P(Data|θ,M)P(θ|M)

=
∑
i

||M(θ, ti)− yti ||+ ||θ − θp|| (5)

This is the bread and butter of ML practitioners!

These guys rely upon two very useful tools

• Automatic differentiation
• Efficient optimization algorithms (e.g. Adam)
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Yet another problem
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Belledone massif
• Many local minima
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Boussange, V., Vilimelis-Aceituno, P., Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.
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LM(θ) = L(1)M(θ) + L(2)M(θ) + . . . (6)

Boussange, V., Vilimelis-Aceituno, P., Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.
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Optimal segment length

24



PiecewiseInference.jl: a
novel machine-learning
framework for eco-evolutionary
inverse modelling.

Boussange, V., Vilimelis-Aceituno, P., Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.
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2. Applications: Reconstruction of fish food webs dynamic in the Bay of Biscay
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Dynamic model to forecast future changes

Courtesy of Romane Rozanski
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2. Applications: can eco-evolutionary processes explain long-term economic
change?
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Interactions, α

Transformations into other
economic activities, µ Spatial dispersal, δ

Mα+ ,Mα−

Mnull

Resources from Flaticon.com
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Nb. of countries where
i is the best model

Eco-evolutionary models

45

null

32

Boussange, V., Sornette, D., Lischke, H., Pellissier, L., Analogous processes to ecological interac-
tions and dispersal shape the dynamics of economic activities. In preparation. 32



Nb. of countries where
i is the best model

+

24

6
14

1

Boussange, V., Sornette, D., Lischke, H., Pellissier, L., Analogous processes to ecological interac-
tions and dispersal shape the dynamics of economic activities. In preparation. 33



3. Ongoing project: Machine learning to attribute changes in biodiversity to global
change

34



natural climate variations🌦️

anthropogenic climate change✈️

changes in land use and land cover🚜

🦋 biodiversity change

❓

⇒ Build a biodiversity model
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Building a biodiversity model from scratch

Ecological data is scarce!

We need to constrain the model, other than with data
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Building a biodiversity model from scratch

Nb.🦋 = NNθ(🌐,🌦️)

Ecological data is scarce!

We need to constrain the model, other than with data
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Ecology-informed ML

Combination of ecological theory

Species area relationships
y = c Areaz

and machine learning

y = c AreaNN(env. vars)
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Summary

• ML and associated techniques offer exciting opportunities to
advance our understanding of living systems

• By accelerating simulations, and allowing to capture more
realism

• By allowing to validate complex eco-evolutionary
hypotheses through inverse modelling

• ML can be easily blended with domain specific knowledge to
improve model prediction skills

• We need a programming paradigm shift to fully enjoy the
benefit of ML

38
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