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What is the determinant of a 5 by 5 matrix with "a" on the diagonal and "b" everywhere
else?

The determinant of a 5 by 5 matrix with "a" on the diagonal and "b" everywhere else
would be (a”4) * (1-b) where a is the value on the diagonal and b is the value everywhere
else. This is because the determinant of a matrix is equal to the product of the diagonal
elements multiplied by the determinant of the matrix formed by removing the rows and
columns corresponding to those di
"a" and the remaining elements are "b", the determinant is (a*~4) * (1-b).

Since the di | el ts are all
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intelligence
[ What is the determinant of a 5 by 5 matrix with "a" on the diagonal and "b" everywhere else? (<] -] ]
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POPULAR

Interpreting as: determinant

Assuming "determinant" refers to a computation | Use as referring to a mathematical definition or a word or
referring to a course app instead

Computational Inputs:

» matrix
{1,23){3.2.11{2.1.3})

Input interpretation
123
321
213
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Translate the following to Wolfram Mathematica code:

The determinant of a 5 by 5 matrix with "a" on the diagonal and "b" everywhere else?

The Wolfram Mathematica code to calculate the determinant of a 5 by 5 matrix with "a" on
the diagonal and "b" everywhere else would be:

(©) Copy code

matrix = {{a, b, b, b, b}, {b, a, b, b, b}, {b, b, a, b, b}, {b, b, b, a,

b}, {b, b, b, b, a}}
Determinant

This code creates a 5 by 5 matrix called "matrix" where the diagonal elements are "a" and
the remaining elements are "b". Then it calculates the determinant of this matrix using the
Determinant[] function.
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WOLFRAM C D

(unnames)

inisl= matrix = {{a, b, b, b, b}, {b, a, b, b, b}, {b, by 3, b, b}, {b, b, b, a, b}, {b, b, b, b, a}}

Determinant[matrix]
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1. Machine learning to simulate high-dimensional eco-evolutionary models
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Nonlocal PDEs
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Boussange, V. & Pellissier, L, Eco-evolutionary model on spatial graphs reveals how habitat g
structure affects phenotypic differentiation. Commun Biol 5, 668 (2022).



Modelling the joint distribution of traits
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Modelling the joint distribution of traits

Numerous traits
- height
- diameter
- surface leaf area

Many traits may importantly affect
eco-evolutionary dynamics

Pop. number
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Modelling the joint distribution of traits

Numerous traits o
49

- height g

- diameter 8.

- surface leaf area a
<V

Many traits may importantly affect
eco-evolutionary dynamics

Simulating high-dimensional phenotypic models is not feasible with standard
numerical methods.
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Curse of dimensionality

High dimensionality leads to complications for numerical simulations

- Computational complexity of standard numerical schemes
O(N) O(N?) O(N?)

- Standard numerical schemes for solving PDEs suffer the curse of
dimensionality.
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Numerical methods for simulating high-dimensional models

Machine learning-based method

Boussange, V., Becker, S, Jentzen, A, Kuckuck, B., Pellissier, L., Deep learning approximations
for non-local nonlinear PDEs with Neumann boundary conditions. [arXiv] (2022), 59 pages. Revision
requested from Partial Differential Equations and Applications.
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Numerical methods for simulating high-dimensional models

Machine learning-based method

(Approximation of the solution
| with NNs

(NNs trained through a stochastic
reformulation of the PDE problem
(Feynman-Kac)

(.

Boussange, V., Becker, S, Jentzen, A, Kuckuck, B., Pellissier, L., Deep learning approximations
for non-local nonlinear PDEs with Neumann boundary conditions. [arXiv] (2022), 59 pages. Revision
requested from Partial Differential Equations and Applications.
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Feynman Kac formula

dwu(t, x) = Au(t, x)
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Feynman Kac formula

dwu(t, x) = Au(t, x)

PDE Problem
Buu(t,X) = pu(t, X)Vu(t, X) + %az(t,X)AXu(t,x)

+ f(x, u(t, X))
(M

with initial conditions u(0, x) = g(x), where
u: RIS R

Stochastic reformulation

with

u(t,x) = /o B [F(6 o, u(T — 5, X_0))ds]

Xt

+E [u(0,X)]

/o L L0)ds + /O o ()dBs+x.  (3)
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- HighDimPDE. j1: A new package
implementing recent solver
algorithms that break down the
curse of dimensionality

- HighDimPDE. j1 belongs to the
SciML ecosystem
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- HighDimPDE. j1: A new package
implementing recent solver
algorithms that break down the
curse of dimensionality

- HighDimPDE. j1 belongs to the
SciML ecosystem

using HighDimPDE

alg = DeepSplitting(kwargs...)

prob = PIDEProblem(kwargs...)

sol = solve(prob, alg, kwargs...

)

14



We are now able to simulate 10-dimensional eco-evolutionary models!

Boussange, V., Becker, S, Jentzen, A, Kuckuck, B., Pellissier, L., Deep learning approximations
for non-local nonlinear PDEs with Neumann boundary conditions. [arXiv] (2022), 59 pages. Revision
requested from Partial Differential Equations and Applications.
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2. Machine learning for inverse modelling with ecological time series



Ve

Ve

Ve

[ Process

Model

c

—>[ Mechanism

i

Property of
interest

|




c
Ve
Ve

[ Process

Model M,

Process

Model M,

c

4—[ Mechanism

c

4—[ Mechanism

N
N
Ay

A

’
7

Observations
(time series)

|




Inverse modelling
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Inverse modelling

Model M;

‘°

N

Model M,

Consumer biomass

0.2

[ Ml
— MZ
¢ Empirical data

0 25 50 75 100 125 150 175 200
Time, t

Compare model evidence

P(M;|Data) > P(M;|Data)



Calculating the model evidence

P(Data|/\/l):/ P(6]M, Data)  d6
——

Posterior distribution of
the model parameters

x P(0*|.M, Data) o(6*, M)

Where 6* is the maximum a priori estimate



Calculating the model evidence

La(8) = — log P(Datald, M)P(]M)
= [IM(0, 1) = ye|| + 116 — 6p]]
i
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Calculating the model evidence

La(#) = — log P(Datald, M)P(| M)
ZZ\IM(H,ti)—yt,-H+\|9—9p|! (5)

This is the bread and butter of ML practitioners!

These guys rely upon two very useful tools

- Automatic differentiation

- Efficient optimization algorithms (e.g. Adam)

20



Yet another problem

Distance between
model and data

Likelihood landscape usually looks like
Belledone massif
- Many local minima

21
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Boussange, V., Vilimelis-Aceituno, P, Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.
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Boussange, V., Vilimelis-Aceituno, P, Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.
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Distance between
model and data

Likelihood
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Optimal segment length
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PiecewiseInference.jl: a
novel machine-learning
framework for eco-evolutionary
inverse modelling.

Boussange, V., Vilimelis-Aceituno, P, Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.
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PiecewiseInference.jl: a
novel machine-learning
framework for eco-evolutionary
inverse modelling.
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Boussange, V., Vilimelis-Aceituno, P, Pellissier, L., Mini-batching ecological data to improve
ecosystem models with machine learning [bioRxiv] (2022), 46 pages. In review.



2. Applications: Reconstruction of fish food webs dynamic in the Bay of Biscay

26



Dynamic model to forecast future changes

Courtesy of Romane Rozanski
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2. Applications: can eco-evolutionary processes explain long-term economic
change?
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Eco-evolutionary models

Mpuin

Nb. of countries where
M, is the best model

Boussange, V., Sornette, D., Lischke, H., Pellissier, L., Analogous processes to ecological interac-
tions and dispersal shape the dynamics of economic activities. In preparation. 32



MQ’+

b M,

M

Nb. of countries where
M, is the best model

Boussange, V., Sornette, D., Lischke, H., Pellissier, L., Analogous processes to ecological interac-
tions and dispersal shape the dynamics of economic activities. In preparation. 33



3. Ongoing project: Machine learning to attribute changes in biodiversity to global
change
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changes in land use and land cover 8@

= Build a biodiversity model
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Building a biodiversity model from scratch
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Building a biodiversity model from scratch

Nb.W = Mm(@, ")

Ecological data is scarce!
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Building a biodiversity model from scratch

Nb. ¥ = NNy (@, ©)

Ecological data is scarce!

We need to constrain the model, other than with data

36



Ecology-informed ML
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Combination of ecological theory

Species area relationships
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Ecology-informed ML

Combination of ecological theory Snd machinelearning

Species area relationships
y = cArea’
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Ecology-informed ML

Combination of ecological theory Snd machinelearning

Species area relationships

NN(env. vars
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