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My interests

- What are the processes and mechanisms that drive life on Earth?

- How can we use this knowledge to benefit society?
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Modelling in ecology

Models to advance ecological theory
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Process-based modelling

N

net growth rate #7 = basal growth — competition — grazing — death
net rowth rate < = grazing — predation — death

net growth rate © = predation — death
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Process-based modelling
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Pros and cons

Data-based models
+ Demand little a priori knowledge
- Demand a large amount of data

- Limited interpretability (for ML
models)

- Limited extrapolability

Process-based models
+ Can extrapolate
+ Interpretable, can be extended,
transferred, analytically understood
- Hard to calibrate

- Suffer from inaccuracies, which
make them less predictive than
their data-based counterparts






I. From the mechanistic world to the
ML world
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Constraining NN with process-based models
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Modelling population number y as a
function of continuous traits z

- population height
- population thermal niche

- population age
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Using neural networks to solve high-dimensional PDEs

NN(t,z) = x(t,2)

RUOEDIY HW—JC(D, NN(tj, z), .. .)
i

Pop. number
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Curse of dimensionality

- Computational complexity of standard numerical schemes
ZeR z € R? ZeR3
O(N) O(N?) O(N°)

AN

»

- Standard numerical schemes for solving PDEs suffer the curse of
dimensionality.

13
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Mesh-free deep-learning methods for simulating high-dimensional models

Machine learning-based method

Approximation of the solution
with NNs

NNs trained through Monte Carlo
approximation of a stochastic re-
formulation of the PDE problem
(Feynman-Kac)

Partial Differential Equations and Applications ~ (2023) 4:51
https://doi.0rg/10.1007/542985-023-00244-0

Ghesk for
Update

ORIGINAL PAPER

Deep learning approximations for non-local nonlinear PDEs
with Neumann boundary conditions

5
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Intuition of mesh-free numerical methods

PDE Problem
Buu(t,X) = pu(t, X)Vu(t, X) + %az(t,X)Axu(t,x)

with initial conditions u(0, x) = g(x), where
u: RIS R
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1 formula
At x) = p(t, x)Vxu(t,x) + Eaz(t,x)Axu(t,x)

. . U(t,X) =E [Q(Xf)]
with initial conditions u(0, x) = g(x), where

u: RIS R with X{ a stochastic process

t

t
Xf:/ u(xﬁ)ds+/ a(X2)dBs + X.
0 0

Monte Carlo approximation

u(t ) ~ 5 30 9%)
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SciML Open Source Scientific Machine Learning
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HighDimPDE. j1: A package implementing recent solver algorithms that break
down the curse of dimensionality

using HighDimPDE

alg = DeepSplitting(kwargs
prob = PIDEProblem(kwargs

sol solve(prob, alg, kwargs

HighDimPDE. j1 belongs to the SciML
ecosystem

SciML Open Source Scientific Machine Learning
Open source software for scientific machine learning
Ax904 followers & httpsfjsciml.ai W @SciML_Org [ contact@chrisrackauckas.com



We are now able to simulate 10-dimensional eco-evolutionary models!
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Scientific Machine Learning
We can constrain NNs with ecological knowledge by
adding additional constraints in the loss function

Not only can physics-informed NNs facilitate data
assimilation, but they can facilitate the simulation of high
dimensional process-based models
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data_augmentation = keras.Sequential
[
layers.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1)
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Using ecological knowledge to augment data for the training of a NN

ejola

- An image of a flower will still be an image of a flower under small rotation,
flip, and zooming
- Augmenting data helps the ML model to generalize better

data_augmentation = keras.Sequential
[
layers.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1)




Attribution of biodiversity change to climate change and land-use



Attribution of biodiversity change to climate change and land-use

natural climate variations

anthropogenic climate change W biodiversity change

changes in land use and land cover &



Attribution of biodiversity change to climate change and land-use

natural climate variations

anthropogenic climate change W biodiversity change

changes in land use and land cover &



Building a macro-ecological model accounting for habitat area

Species-Area models have been central
to predict extinctions due to habitat loss

20



Building a macro-ecological model accounting for habitat area

Species-Area models have been central
to predict extinctions due to habitat loss

Extinction risk from climate change
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Building a macro-ecological model accounting for habitat area

Species-Area models have been central intercept
to predict extinctions due to habitat loss logSR = logc + z logA

slope

..............................................................

Extinction risk from climate change

Chris D. Thomas', Alison Cameron’, Rhys E. Green”, Michel Bakkenes’,
Linda J. Beaumont*, Yvonne C. Collingham®, Barend F. N. Erasmus®, 4l 71'} 3. Oberfliche und Hrten. )
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Building a macro-ecological model accounting for habitat area
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Building a macro-ecological model accounting for habitat area

0.8

3 4
LogC

SR = c(u)A?W)

where u are additional features
corresponding to environmental
conditions
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Building a macro-ecological model accounting for habitat area

As a first approximation
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Building a macro-ecological model accounting for habitat area

How to account for

- Spatial auto-correlation (limited dispersal)
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Building a macro-ecological model accounting for habitat area

How to account for

- Spatial auto-correlation (limited dispersal)

&
Ij
>

<
*
E
IE
X
*
o =
v
|Z|

- Environmental heterogeneity
?

Site 1 Site 4 Site 1 Site 4

N un [ dn diy
y=M(A, : , : )
Uy L U dn 1 dy
U3 U3y d3 d3s,

25



Building a macro-ecological model accounting for habitat area

Training data
- Predictions
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- Plot Locations




Building a macro-ecological model accounting for habitat area
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We can augment the dataset used to train a ML model
with ecological knowledge



From the ML world to the
mechanistic world




After all, process-based models can be seen as regressors M,!

of — M
» Empirical data

%y = fp(y,t)

Consumer biomass
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After all, process-based models can be seen as regressors M,!

3y =00

ot
y= fo(ys, s)ds +Yo

Jto

Numerical integration of the model

= Mo(t)

where 6 = (yo, p)
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After all, process-based models can be seen as regressors M,!

t
y= fo(ys, s)ds +Yo
to

Numerical integration of the model

= Mo(t)

where 6 = (Yo, p)

- In principle, process-based models can be trained similarly to
ML models

L0, Y) =D 1Yk — Mo(X)II

k=1

of — My

Consumer biomass

»  Empirical data

. e
.// .
o Yoo N\ .
o F N/
o .
Time, t
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Available methods to minimize L

[Global optimization]

Markov Chain Monte Carlo

Approximate Bayesian
Computation

[Local optimization]

Variational optimizers

28



Global optimization with MCMC

- Sample L with a Markov chain 67,62, ... which
equilibrium distribution is proportional to L
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Global optimization with MCMC

- Sample L with a Markov chain 67,62, ... which

equilibrium distribution is proportional to L
- Estimate 8 and associated uncertainty based on
the samples at equilibrium

+ Provide uncertainty estimations
- Suffer from the curse of dimensionality

X Not suited for training complex process-based

models
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Global optimization with MCMC

- Sample L with a Markov chain 67,62, ... which

equilibrium distribution is proportional to L
- Estimate 8 and associated uncertainty based on
the samples at equilibrium

+ Provide uncertainty estimations
- Suffer from the curse of dimensionality
- Process-based models are costly to evaluate

X Not suited for training complex process-based

models

pooyax

aidinibe 101137c0d
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Local optimization with gradient descent

- Follow the steepest slope VyL(8,y)

learning rate

N
g+ — om _ \ VgL(e(m),y)
parameter at gradient w.rt
iteration m parameters

+Less prone to the curse of dimensionality
—Parameter point estimates

—-Convergence to local minima
—-Require parameter sensitivity

pooysax

uoneIa)l Yyoes Jojy
2)ew|]sa Jajpweled

.
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The specificities of ecological models

Distance between
model and data
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The specificities of ecological models

X Forward pass is expensive

X Many local minima
X Require the sensitivity to the model
parameters, Vo My

Distance between
model and data
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

Boussange, V., Vilimelis-Aceituno, P, Schafer, F, Pellissier, L, Partitioning ecological time series
to improve process-based models with machine learning [bioRxiv] (2022), 46 pages. In review.

32



PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

- segmentation method with minibatches . ‘
Piecewiselnference.jl  Puic

felling of dynamical systems characterised by

aaaaaaaa

Boussange, V., Vilimelis-Aceituno, P, Schafer, F, Pellissier, L, Partitioning ecological time series
to improve process-based models with machine learning [bioRxiv] (2022), 46 pages. In review.
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

- segmentation method with minibatches

Piecewiselnference.jl  Puic

Suite for inverse modelling of dynamical systems characterised by

- sensitivity analysis methods based on complexdynarics

inference  inverse-problems

Automatic Differentiation Boks T4 Uiz

Boussange, V., Vilimelis-Aceituno, P, Schafer, F, Pellissier, L, Partitioning ecological time series
to improve process-based models with machine learning [bioRxiv] (2022), 46 pages. In review.
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems

with highly non-linear dynamics.

- segmentation method with minibatches

Piecewiselnference.jl  Puic

Suite for inverse modelling of dynamical systems characterised by

- sensitivity analysis methods based on complexdynarics

inference  inverse-problems

Automatic Differentiation Boks T4 Uiz

- use of deep learning variational optimizers

Boussange, V., Vilimelis-Aceituno, P, Schafer, F, Pellissier, L, Partitioning ecological time series
to improve process-based models with machine learning [bioRxiv] (2022), 46 pages. In review.
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems

with highly non-linear dynamics.

Distance between
model and data
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with highly non-linear dynamics.

Distance between
model and data

Likelihood

34



PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

- Deep learning optimizers

Adam: A method for stochastic optimization [PDF] arxiv.org
DP Kingma, v pre 1v:1412.6980, 2014 - anciv.org
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems

with highly non-linear dynamics.

Deep learning optimizers

‘Adam: A method for stochastic optimization
DP Kingma, J Ba - arXiv preprint arXiv:1412.6980, 2014 - anxiv.org
Adam works well in practice and compares favorably to other stochastic optimization methods.
Finally, we discuss AdaMax, a variant of Adam ... Overall, we show that Adam is  versatile
Yr Save 99 Cite Cited by 161022 Related articles All 27 versions 90

[POF] arxiv.org

Sensitivity analysis based on automatic
differentiation

using ForwardDiff
ForwardDiff.gradient(sin, 0.1 cos(0.1) # true
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PiecewiseInference. jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

using PiecewiseInference

size
o =
3 8

model = MyModel(ModelParams

°
g

Population siz:
°

infprob InferenceProblem(model, p_init

°
5
8

res inference(infprob
group_nb 2

data

tsteps tsteps

epochs 5000
optimizers ADAM(0.001
batchsizes 1

2

Distance btw. model
and data

200 400 600 800 1000
Iterations
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Parameter error
©c o o o o
5 b N W =

[
o
5

80 4

Forecast error

S 3000

PiecewiseInference. jl benchmarl

—— noise r = 0.2

o

—— noiser = 0.3
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Dynamic forecast of future changes

Community and SedaDNA time
metacommunity processes series data

[ \ A Community.
Trophic interactions Basal growth \ structure under

/
rate novel climate
Consumers <) m m conditions
H \/
Producers i

f{vo S Alsos, 1.G., Boussange, V.,
C&::?r.etf..,» - ¢ Using ancient sedimentary
KI»Q@: &, DNA to forecast ecosystem
O o i —— trajectories under climate
v 4 change (2023). Accepted in
'_> athematical model . . .
Hothematical mode ) Philosophical Transactions of
the Royal Society B

Proportion of repeats
o
5
o

g
Data g Z
assimilation 5 ]
frameork and 5 s
parameter < 9
estimation S o

£

£ 4

g

2

&

Observed

( Simulations and model fitting ] —_




Neural network-based parametrization

‘°
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Neural network-based parametrization

N

net growth rate ©7 = basal growth(environmental conditions) — competition — grazing — death
net rowth rate < = grazing — predation — death

net growth rate © = predation — death
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Neural network-based parametrization

N

Ist hidden layer 2nd hidden layer 3rd hidden layer

I' Output layer
&7 (Resource
{/ srowth rate)

Input layer
(Environmental
forcing)

net growth rate 7 = NN(environmental conditions) — competition — grazing — death

net rowth rate < = grazing — predation — death

net growth rate & = predation — death
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Neural network-based parametrization

—_—

N

logistic growth

J CtRt
gt Rt = NN(u) Re(1 — Rt) —Xce

Rt + Ro

functional response
(intake rate of consumers)

. Re PtCt
=1 Ye———| = Xp¥
Re+Ry|] 77 GG

functional response
(intake rate of predators)

%Cz = XcCt

9P = xpPt |1+ “
dp =P, [— —L
& P ﬂCr+Co

Ist hidden layer 2nd hidden layer 3rd hidden layer

I' Output layer
&7 (Resource
{/ srowth rate)

Input layer
(Environmental
forcing)

0= (Xo)/c;Xpa)/m C07 R07W17W27W37 b17 bz; b3)

Weight and biases
of neural network




Neural network-based parametrization

o Resource

Consumer

o Prey
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o Prey
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Offline interpretation of the neural network-based parametrization

1.0

0.9 1

0.8 A

0.7

Resource basal growth rate

0.4 A —— Inferred growth rate
—— True growth rate

-1.0 -0.5 0.0 0.5 1.0
Water availability (normalized)
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Paradigm shift
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Paradigm shift

julia

github.com/vboussange/WSLjuliaWorkshop2023
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Paradigm shift

julia

github.com/vboussange/WSLJuliaWorkshop2023
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Paradigm shift
® IO..
julia

@ Climate Modeling Alliance

Popu

EcoEvoModelZoo.jl pubiic

A 200 of happy eco-evolutionary models.

@uuia  Yr1 &3 MIT License Updated last week

github.com/vboussange/WSLJuliaWorkshop2023
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Summary

- Ecological knowledge can be used to inform ML models by

- Augmenting data with ecological knowledge
- Constraining ML models with process-based constraints

- Physics-informed neural networks can greatly accelerate

process-based simulations

- ML techniques can be transferred to benefit process-based

approaches
- Piecewiselnference.jl, a tool for inverse modeling in
ecological systems with nonlinear dynamics
- Neural-network based parametrization

- We need a programming paradigm shift to levergage

Scientific Machine Learning
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