
Learning from scarce data by
combining machine learning
and fundamental ecological
knowledge
University of Fribourg

Victor Boussange

Swiss Federal Research Institute for Forest, Snow and
Landscape Research (WSL)



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks

• Speed2Zero

1



My background

• Born in Bordeaux, France

• Studied in INSA Lyon, France | Engineering

• Went to Sydney, Australia | Master thesis in
theoretical geomechanics

• PhD @ ETH Zürich, Switzerland in the
”Ecosystem and Landscape Evolution” group

• Took a sabbatical, sailed Tippelei to Norway

• Currently working at WSL in the Dynamic
Macroecology group

• Feedbacks
• Speed2Zero

1



My interests

• What are the processes and mechanisms that drive life on Earth?
• How can we use this knowledge to benefit society?
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Modelling in ecology

Models to advance ecological theory Models are useful for
society
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Typology of models

Data-Driven Models Process-Based Models

Correlative models Mechanistic models
Machine learning (ML) models
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Data-based modelling
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Find the parameters that minimize the
negative logarithm of the posterior

L y
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Process-based modelling
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Process-based modelling
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Pros and cons

Data-based models

+ Demand little a priori knowledge
– Demand a large amount of data
– Limited interpretability (for ML
models)

– Limited extrapolability

Process-based models

+ Can extrapolate
+ Interpretable, can be extended,
transferred, analytically understood

– Hard to calibrate
– Suffer from inaccuracies, which
make them less predictive than
their data-based counterparts
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I. From the mechanistic world to the
ML world



Constraining NN with process-based models

Use scientific knowledge embedded in the
available process-based model to constrain a
neural network

complies both with data and knowledge

ti yi and d
dt t f t t

L Ldata LODE p

where

LODE
i

d ti
dt f ti ti 2
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Constraining NN with process-based models

can predict variables for which it
has never seen data!

Yazdani et al., 2020
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Using neural networks to solve high-dimensional PDEs

Modelling population number y as a
function of continuous traits z
• population height
• population thermal niche
• population age
• ...

d
dt y t z
Population number

for trait z

f t y zy zzy y t z dz

Phenotypic trait 1 Ph
en

oty
pic

 tra
it 2

Po
p.

 n
um
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r
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Using neural networks to solve high-dimensional PDEs

Modelling population number y as a
function of continuous traits z
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• population thermal niche
• population age
• ...

d
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Using neural networks to solve high-dimensional PDEs

NN(t, z) ≈ x(t, z)

LODE(θ) =
∑

i

∑

j
||
dNN(ti, zj)

dt −f (ti,NN(ti, zj), . . . )||2
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Curse of dimensionality

• Computational complexity of standard numerical schemes
z z 2 z 3

N N2 N3

• Standard numerical schemes for solving PDEs suffer the curse of
dimensionality.
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Mesh-free deep-learning methods for simulating high-dimensional models

Machine learning-based method

Approximation of the solution
with NNs

NNs trained through Monte Carlo
approximation of a stochastic re-
formulation of the PDE problem
(Feynman–Kac)
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Intuition of mesh-free numerical methods

PDE Problem

∂tu(t, x) = µ(t, x)∇xu(t, x) +
1
2σ

2(t, x)∆xu(t, x)

with initial conditions u(0, x) = g(x), where
u : Rd → R.

Stochastic reformulation through Feynman–Kac
formula

u t x g Xxt

with Xxt a stochastic process

Xxt
t

0
Xxs ds

t

0
Xxs dBs x

Monte Carlo approximation

u t x 1
N

i

g Xxt

15
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HighDimPDE.jl: A package implementing recent solver algorithms that break
down the curse of dimensionality

HighDimPDE.jl belongs to the SciML
ecosystem

using HighDimPDE
alg = DeepSplitting(kwargs...)
prob = PIDEProblem(kwargs...)
sol = solve(prob, alg, kwargs...)
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We are now able to simulate 10-dimensional eco-evolutionary models!

0.2 0.1 0.0 0.1 0.2
x

10

12

14

16

18

u(
t,

(x
,0

,
,0

))

Approximate solution

t0 = 0.00
t1 = 0.05
t2 = 0.10
t3 = 0.15

0.2 0.1 0.0 0.1 0.2
x

Exact solution

Boussange, V., Becker, S., Jentzen, A., Kuckuck, B., Pellissier, L., Deep learning approximations
for non-local nonlinear PDEs with Neumann boundary conditions. Partial Differential Equations and
Applications. (2022), 59 pages.
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• Scientific Machine Learning
• We can constrain NNs with ecological knowledge by
adding additional constraints in the loss function

• Not only can physics-informed NNs facilitate data
assimilation, but they can facilitate the simulation of high
dimensional process-based models
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Using ecological knowledge to augment data for the training of a NN

data_augmentation = keras.Sequential(
[

layers.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1),

]
)

• An image of a flower will still be an image of a flower under small rotation,
flip, and zooming

• Augmenting data helps the ML model to generalize better

18
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Attribution of biodiversity change to climate change and land-use

natural climate variations�홋

anthropogenic climate change✈️

changes in land use and land cover🌐

🦋 biodiversity change

❓
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Building a macro-ecological model accounting for habitat area

Species-Area models have been central
to predict extinctions due to habitat loss

Species richness

SR c Az

Habitat area

SR
intercept

c z
slope

A

Arrhenius 1921
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Building a macro-ecological model accounting for habitat area

Species-Area models have been central
to predict extinctions due to habitat loss

Species richness
︷︸︸︷

SR = c Az
︸︷︷︸

Habitat area

log SR =

intercept
︷︸︸︷

log c + z
︸︷︷︸

slope

log A

Arrhenius 1921
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Building a macro-ecological model accounting for habitat area

Matthews et al., 2019

c and z are dependent on environmental
conditions

💡

SR c u Az u

where u are additional features
corresponding to environmental
conditions
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Building a macro-ecological model accounting for habitat area

Matthews et al., 2019

c and z are dependent on environmental
conditions

💡

SR = c(u)Az(u)

where u are additional features
corresponding to environmental
conditions
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Building a macro-ecological model accounting for habitat area
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Building a macro-ecological model accounting for habitat area

As a first approximation

SR SR
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Building a macro-ecological model accounting for habitat area

As a first approximation

E

[

SR
( )]

= E

[

SR
( )]
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Building a macro-ecological model accounting for habitat area

24



Building a macro-ecological model accounting for habitat area

How to account for
• Spatial auto-correlation (limited dispersal)
• Environmental heterogeneity

❓

y A
Site 1 Site 4
u11 u14

u21
... u24

u31 u34

Site 1 Site 4
d11 d14

d21
... d24

d31 d34
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Building a macro-ecological model accounting for habitat area

How to account for
• Spatial auto-correlation (limited dispersal)
• Environmental heterogeneity

❓

ŷ = M(A,
Site 1 Site 4








u11 u14

u21
... u24

u31 u34








,

Site 1 Site 4







d11 d14

d21
... d24

d31 d34








)
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Building a macro-ecological model accounting for habitat area

ŷ = M(A,
(

u11 u12 u13
u21 u22 u23
u31 u32 u33

)

,

(
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)

Plot Locations
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• We can augment the dataset used to train a ML model
with ecological knowledge
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From the ML world to the
mechanistic world



After all, process-based models can be seen as regressorsMθ!

d
dt y = fp(y, t)
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After all, process-based models can be seen as regressorsMθ!

d
dt y = fp(y, t)

ŷ =

∫ t

t0
fp(ys, s)ds

︸ ︷︷ ︸

Numerical integration of the model

+y0

= Mθ(t)

where θ = (y0, p)

• In principle, process-based models can be trained similarly to
ML models

L(θ, y) =
K∑

k=1

||yk −Mθ(xk)||2
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Available methods to minimize L

Global optimization

Markov Chain Monte Carlo

Approximate Bayesian
Computation

Local optimization Variational optimizers

28



Global optimization with MCMC

• Sample L with a Markov chain θ1, θ2, . . . which
equilibrium distribution is proportional to L

• Estimate and associated uncertainty based on
the samples at equilibrium

❌ Not suited for training complex process-based
models

p1

p2

Likelihood

Posterior sample
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Global optimization with MCMC

• Sample L with a Markov chain θ1, θ2, . . . which
equilibrium distribution is proportional to L

• Estimate θ̂ and associated uncertainty based on
the samples at equilibrium

+ Provide uncertainty estimations
– Suffer from the curse of dimensionality
– Process-based models are costly to evaluate

❌ Not suited for training complex process-based
models

p1
p2

Likelihood

Posterior sample
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Local optimization with gradient descent

• Follow the steepest slope ∇θL(θ, y)

θm+1 = θm
︸︷︷︸

parameter at
iteration m

−

learning rate
︷︸︸︷

λ ∇θL(θ(m), y)
︸ ︷︷ ︸

gradient w.r.t
parameters

+Less prone to the curse of dimensionality
–Parameter point estimates
–Convergence to local minima
–Require parameter sensitivity

p1

p2

Likelihood

Parameter estimate
for each iteration
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The specificities of ecological models

❌ Forward pass is expensive
❌ Many local minima
❌ Require the sensitivity to the model

parameters,
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The specificities of ecological models

❌ Forward pass is expensive
❌ Many local minima
❌ Require the sensitivity to the model

parameters, ∇θMθ
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PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

• segmentation method with minibatches

• sensitivity analysis methods based on
Automatic Differentiation

• use of deep learning variational optimizers

Boussange, V., Vilimelis-Aceituno, P., Schäfer, F., Pellissier, L., Partitioning ecological time series
to improve process-based models with machine learning [bioRxiv] (2022), 46 pages. In review.
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PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

LM(θ) = L(1)
M
(θ) + L(2)

M
(θ) + . . . (1)
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PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.
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PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.
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PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

• Deep learning optimizers

• Sensitivity analysis based on automatic
differentiation

using ForwardDiff
ForwardDiff.gradient(sin, 0.1) == cos(0.1) # true

35



PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

• Deep learning optimizers • Sensitivity analysis based on automatic
differentiation

� �
using ForwardDiff
ForwardDiff.gradient(sin, 0.1) == cos(0.1) # true

� �
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PiecewiseInference.jl: Inverse modelling framework for dynamical systems
with highly non-linear dynamics.

� �
using PiecewiseInference

model = MyModel(ModelParams(...))

infprob = InferenceProblem(model, p_init)

res = inference(infprob,
group_nb = 2,
data,
tsteps = tsteps,
epochs = [5000],
optimizers = [ADAM(0.001)],
batchsizes = [1])

� �
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PiecewiseInference.jl benchmark
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Dynamic forecast of future changes

Alsos, I.G., Boussange, V., ...
Using ancient sedimentary
DNA to forecast ecosystem
trajectories under climate
change (2023). Accepted in
Philosophical Transactions of
the Royal Society B
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Neural network-based parametrization

🌱

🦗 🐦

xc yc xp yp C0 R0 W1 W2 W3 b1 b2 b3
Weight and biases
of neural network
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Neural network-based parametrization

🌱

🦗 🐦

net growth rate🌱 = basal growth(environmental conditions) − competition− grazing− death

net rowth rate🦗 = grazing− predation− death

net growth rate🐦 = predation− death

xc yc xp yp C0 R0 W1 W2 W3 b1 b2 b3
Weight and biases
of neural network
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Neural network-based parametrization

🌱

🦗 🐦

net growth rate🌱 = NN(environmental conditions) − competition− grazing− death

net rowth rate🦗 = grazing− predation− death

net growth rate🐦 = predation− death

u r1(u)

Input layer
(Environmental

forcing)

1st hidden layer 2nd hidden layer 3rd hidden layer

Output layer
(Resource

growth rate)

xc yc xp yp C0 R0 W1 W2 W3 b1 b2 b3
Weight and biases
of neural network
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Neural network-based parametrization

🌱

🦗 🐦

d
dt Rt = NN(u)

logistic growth
︷ ︸︸ ︷

Rt(1− Rt) −xcyc
CtRt

Rt + R0
︸ ︷︷ ︸

functional response
(intake rate of consumers)

d
dt Ct = xcCt

[

−1 + yc
Rt

Rt + R0

]

− xpyp
PtCt

Ct + C0
︸ ︷︷ ︸

functional response
(intake rate of predators)

d
dt Pt = xpPt

[

−1 + yp
Ct

Ct + C0

]

u r1(u)

Input layer
(Environmental

forcing)

1st hidden layer 2nd hidden layer 3rd hidden layer

Output layer
(Resource

growth rate)

θ = (xc, yc, xp, yp, C0,R0,W1,W2,W3,b1,b2,b3
︸ ︷︷ ︸

Weight and biases
of neural network

)
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Neural network-based parametrization
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OfÒine interpretation of the neural network-based parametrization
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Paradigm shift
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Paradigm shift

github.com/vboussange/WSLJuliaWorkshop2023
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Paradigm shift

github.com/vboussange/WSLJuliaWorkshop2023
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Summary
• Ecological knowledge can be used to inform ML models by

• Augmenting data with ecological knowledge
• Constraining ML models with process-based constraints

• Physics-informed neural networks can greatly accelerate
process-based simulations

• ML techniques can be transferred to benefit process-based
approaches

• PiecewiseInference.jl, a tool for inverse modeling in
ecological systems with nonlinear dynamics

• Neural-network based parametrization

• We need a programming paradigm shift to levergage
Scientific Machine Learning
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