Diversity measures
ABMEv.H_discrete
— MethodH_discrete(s)
Interconnectedness measure as in Nordbotten 2018 for discrete setup
ABMEv.covgeo
— Functioncovgeo(world::Array{Agent,1},trait = 0)
If trait = 0, returns the variance of the geotrait, knowing that by default it is associated with position trait 1. If trait > 0, returns the covariance matrix, with first row geotrait and second row trait
Notes
This might be deprecated in the future
ABMEv.findclusters
— Functionfindclusters(v::Vector,allextrema =true)
Returns a tuple with the cluster mean and its associated weight
Arguments
ABMEv.get_alpha_div
— Functionget_alpha_div(world::Array{U,1},t::Number,trait=1) where U <: Union{Missing,Agent}
Mean of the local variance of trait
per patch. If trait=0, we get the mean of the local variance of the geotrait If average = false, returns the alpha div for each patch, ordered by vertices
ABMEv.get_beta_div
— Functionget_beta_div(world::Array{U,1},t::Number,trait=1) where U <: Union{Missing,Agent}
Variance of the mean of trait
per patch
Arguments
ABMEv.get_dist_hist
— Functionfunction get_dist_hist(a1,a2,dist,trait=1,time = 0)
Returns the integral of the distance dist
through time of trait
between a1.x
and a2.x
.
ABMEv.get_local_abundance
— Functionget_alpha_div(world::Array{U,1},t::Number,trait=1) where U <: Union{Missing,Agent}
Mean of the local variance of trait
per patch. If trait=0, we get the mean of the local variance of the geotrait If average = false, returns the alpha div for each patch, ordered by vertices
ABMEv.get_local_pairwise_average_isolation
— Methodfunction get_local_pairwise_average_isolation(world,dist,trait=1)
Similar to get_pairwise_average_isolation
, but the pairwise distance is calculated within demes. An average of this metrics by deme is return.
ABMEv.get_pairwise_average_isolation
— Methodfunction get_pairwise_average_isolation(world;trait=1,trunc=false)
Returns the integrated pairwise squared distance between all agents of world
wrt trait
. If trunc=true
then the distance is truncated to binary value 0 or 1.
ABMEv.hamming
— Methodfunction hamming(world::Array{Agent,1})
Returns a matrix H where Hij = hamming(ai,a_j). The hamming distance is taken through the whole history and functional space of the agents.
Statistics.mean
— Methodfunction mean(world::World;trait=1)
Returns the mean of the world
's trait
distribution. If trait = 0, returns the variance of the geotrait,
Statistics.var
— Methodfunction var(world::World;trait=1)
Return the variance of the world
's trait
distribution. If trait = 0, returns the variance of the geotrait, knowing that by default it is associated with position trait 1.
Notes
For now, the variance of a trait
defined on a GraphSpace
is calculated thanks to the Fiedler vector (cf https://mathworld.wolfram.com/FiedlerVector.html
)